Carboxyethyl-functionalized 3D porous polypyrrole synthesized using a porogen-free method for covalent immobilization of urease

نویسندگان

چکیده

The immobilization of enzymes onto porous supports is a common strategy for obtaining improved stability, fast product separation, enzyme reusability, and, ultimately, lower operating costs. Therefore, the development new with specific surface functionalities that enable covalent attachment significant interest. Herein, stable three-dimensional (3D) materials were synthesized from polypyrrole by simple template approach and used as an support urease. method entails use nanoparticle building blocks, which carboxylic acid-functionalized pyrrole monomer was polymerized, forming 3D structure tunable pore size distribution. Scanning electron microscopy (SEM) images, together static light scattering (SLS), revealed nature materials. properties both immobilized characterized using combination techniques. ability bioconjugated urease to catalyze hydrolysis urea into carbon dioxide ammonia then tested. exhibited good catalytic activity, stability reusability. Overall, these results suggest such chemically accessible surfaces have considerable potential biocatalyst supports.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covalent immobilization of urease on polypyrrole microspheres for application as a urea biosensor

Urease has been covalently immobilized on polypyrrole microspheres chemically linked to conducting polypyrrole-polyvinyl sulfonate (PPY-PVS) films. These films were electrochemically prepared during 5 7 min at a constant current of 2 mA using indium tin oxide (ITO) glass plates as the working electrode, and a standard calomel electrode as the reference electrode. Urease covalently linked to pol...

متن کامل

Surface-functionalized hyperbranched poly(amido acid) magnetic nanocarriers for covalent immobilization of a bacterial γ-glutamyltranspeptidase.

In this study, we synthesized water-soluble hyperbranched poly(amido acid)s (HBPAAs) featuring multiple terminal CO2H units and internal tertiary amino and amido moieties and then used them in conjunction with an in situ Fe2+/Fe3+ co-precipitation process to prepare organic/magnetic nanocarriers comprising uniformly small magnetic iron oxide nanoparticles (NP) incorporated within the globular H...

متن کامل

Preparation and Property of Urease Immobilization with Cationic Poly(4-vinylpyridine) Functionalized Colloidal Particles

Urease (urea amidohydrolase, EC 3.5.1.5), widely distributed in nature, catalyzes the hydrolysis of urea to ammonia and carbon dioxide at a rate 1014 times faster than the uncatalyzed reaction.1–3 Among enzymes, urease is most extensively studied for immobilization due to the possible exploitation in practical applications, such as quantitative determination of blood urea in clinical examinatio...

متن کامل

buckling of viscoelastic composite plates using the finite strip method

در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....

In situ synthesis of porous silica nanoparticles for covalent immobilization of enzymes.

A simple method is used to covalently encapsulate enzymes in silica nanoparticles. The encapsulation is highlighted by the high enzyme loading and porous channels that provide efficient diffusion for small substrate and product molecules while preventing protease degradation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Microporous and Mesoporous Materials

سال: 2021

ISSN: ['1873-3093', '1387-1811']

DOI: https://doi.org/10.1016/j.micromeso.2020.110690